



AMARA Mining Plc

ESIA Report Yaoure Gold Project, Côte d'Ivoire

Appendix 5 Hydrogeological Baseline Study

March 2015



| Revision | Data       | <b>D</b> escription | Deserves d |          | Approved         |          |        |  |
|----------|------------|---------------------|------------|----------|------------------|----------|--------|--|
|          | Date       | Description         | Prepared   | Reviewed | Study<br>Manager | Sign-off | Client |  |
| 1        | 31/05/2015 | Final               | RC         | СК       | Pades Canen      | O.h.     |        |  |
|          |            |                     |            |          |                  |          |        |  |
|          |            |                     |            |          |                  |          |        |  |
|          |            |                     |            |          |                  |          |        |  |



## **Table of Contents**

| 1.  | GEOLOGICAL SETTING                       | 1  |
|-----|------------------------------------------|----|
| 2.  | HISTORIC STUDIES AND DATA                | 5  |
| 2.1 | GROUNDWATER LEVELS AND PROPERTIES        | 5  |
| 2.2 | AQUIFERS                                 | 5  |
| 2.3 | GROUNDWATER QUALITY                      | 5  |
| 3.  | YAOURE PROJECT DRILLING AND TESTING      |    |
| 3.1 | ENVIRONMENTAL AND GEOTECHNICAL BOREHOLES | 8  |
| 3.2 | PACKER TESTS                             | 10 |
| 3.3 | WELL INSTALLATION AND DEVELOPMENT        | 10 |
| 3.4 | FALLING HEAD TESTS                       | 11 |
| 3.5 | PUMPING TESTS                            | 12 |
| 4.  | GROUNDWATER MONITORING                   |    |
| 4.1 | WATER LEVEL MONITORING                   |    |
| 4.2 | GROUNDWATER QUALITY                      | 15 |
| 5.  | REFERENCES                               |    |

# List of Tables

| Table 2-1 | Groundwater Monitoring Points (SGS, 2006) | 6  |
|-----------|-------------------------------------------|----|
| Table 2-2 | Borehole Inventory (Source: SGS, 2007)    | 6  |
| Table 3-1 | Monitoring and test bore summary details  | 9  |
| Table 3-2 | Geotechnical borehole summary             | 10 |
| Table 3-3 | Packer test intervals                     | 11 |
| Table 3-4 | Falling head test results                 | 12 |
| Table 3-5 | Summary of pumping test configurations    | 12 |
| Table 3-6 | Summary of step test results              | 13 |
| Table 3-7 | Summary of constant rate test results     | 14 |
| Table 4-1 | Groundwater level monitoring              | 16 |
|           |                                           |    |

## **List of Figures**

| Figure 1-1 | Regional Geology                                                                 | 3 |
|------------|----------------------------------------------------------------------------------|---|
| Figure 1-2 | Topography and Drainage of the Project Locality and Current Monitoring Locations | 4 |



## 1. **GEOLOGICAL SETTING**

The regional geology of the Project area (SRK, 2008) is comprised of a series of Archaean, Birimian, greenstone belts separated by older migmatites and granites. The Angovia deposit itself occurs within one of the Birimian greenstone belts and is hosted by the Yaoure Unit, which is comprised of a mafic and metavolcanic series, felsic intrusives and minor conglomerates in association with calk-alkaline and ultramafic intrusives, all of which strike in a north-north-east orientation.

The geology of the Yaoure deposit area is relatively simple. The majority of the Project area is underlain by mafic volcanics, which are predominantly massive and in the form of pillowed basalts. The north part of the area is intruded by massive granodiorite that locally has a subtle porphyritic texture. Elsewhere, but mainly associated with the main Yaoure Zone, there are numerous porphyry sills. A volcaniclastic unit, mainly of epiclastic origin, is situated near the contact of the granodiorite to the north. The granodiorite intrusive to the north is not mineralised while the one in the Yaoure pit contains quartz veins which are well mineralised.

The mineralisation at Yaoure is contained within two shallow dipping (<30 degrees) gold bearing northsouth trending packages controlled by a thick zone of brittle-ductile shearing. The Yaoure Central package is a 200 metre thick, lower grade mineralised zone with higher grade lenses and cross-cutting high grade sub-vertical quartz veins. The CMA package is a more discrete, relatively continuous 20 metre thick zone approximately 140 metres above the Yaoure Central body.

The Yaoure unit forms a syncline of tholeiitic basic metavolcanics and sediments overlain by more acidic volcanic rocks (SRK, 2008). The tholeiitic rocks are thought to have been formed following hydrothermal alteration and are composed of chert, disseminations and veinlets of pyrite, pyrrhotite, chlorite, epidote, tourmaline and carbonates. The overlying acidic to intermediate volcano-sedimentary rocks are thought to represent pyroclastic and acidic pyroclastic flows.

All of the above rocks have been intruded by basic to ultra-basic plutonic rocks and acidic intermediate calc-alkaline volcano-plutonic rocks and the whole package is in turn overlain by the Benou polygenic conglomerate. All of these have been deformed by a series of east west striking shear zones and intruded by associated greyish quartz veining.

Primary and secondary lateritic weathering profiles have also developed throughout the area above the conglomerate. The gold mineralisation itself appears to be primarily located in structurally controlled alteration zones in intermediate volcanic rocks.

Figure 1-1 comprises a regional geological map for the project.

The 2014 Preliminary Economic Assessment (PEA) Report indicates that there is a major NE-trending regional fault passing through the Yaoure Central pit. Movement along this fault line generated two additional NNE-SSW trending faults branching into the Yaoure gold deposits. Some additional geological structures have been identified by Steenkamp in 2012. Structures have the potential to act



as pathways for groundwater and could either lead to seepage into the pit or transportation of potential contaminants into groundwater resources. They could also act as containment barriers. The potential linkage of structures to surface water resources will have to be further investigated as part of the DFS and hydrogeological investigation.





**Regional Geology** 





Figure 1-2

Topography and Drainage of the Project Locality and Current Monitoring Locations



## 2. HISTORIC STUDIES AND DATA

#### 2.1 GROUNDWATER LEVELS AND PROPERTIES

It is understood (GBM, 2005) that a hydrogeological study was carried out by BRGM in 1993 but Amec Foster Wheeler has not seen this document. It was summarised as:

The detailed analysis of the hydrogeological work carried out on the Angovia site during the spring of 1993 can be found in the BRGM report: N 0264 of September 1993 "Development Study for the Angovia Deposit, Hydrogeological Study of the Site and its Environment."

SGS (2007) (French version only available) describe the general likely occurrences of groundwater in the project area, which for the most part will be contained in open fractures in the more competent formations and their associated structures; and in possibly increased porosity lithologies associated with alteration and weathered zones.

With respect to fracture distribution, SGS carried out a satellite image assessment, the map for which is included as Map 3.2 in SGS (2007).

#### 2.2 AQUIFERS

SRK (2008) indicated that there are two main aquifer types associated with the Project:

- Shallow Weathered Aquifers: Shallower aquifers mainly associated with weathered sedimentary
  rock (schist) and transitions of granite. The permeability is low and porosity is weak as a result
  of relatively high clay content. The water table generally follows the topography. There are
  vertical and lateral variations in the aquifer which cause water assurance to be deemed
  unstable. Most of the villages draw their groundwater from this aquifer. Water quality is
  influenced by the high clay contents of the base rock. Due to the shallow nature of the aquifer it
  is at risk of pollution.
- Fractured Aquifers: These are deeper aquifers associated with geological fractures and fissures within the rock mass. The porosity is very low. Permeability is high in areas where fissuring and fracturing is dense, otherwise groundwater can be contained within fissures and fractures. The water table varies between 40 m to 60 m below surface. As far as can be established no water quality data for this aquifer are currently available. Where aquifers are connected, dewatering can lead to the formation of a drawdown cone.

#### 2.3 GROUNDWATER QUALITY

A baseline groundwater monitoring programme was proposed to the then Cluff Gold in 2006 (SGS, 2006). This included the monitoring sites shown in Table 2-1.



| Code | Name                    | Description                                                                   | GPS Co<br>(UTM) | ordinates |
|------|-------------------------|-------------------------------------------------------------------------------|-----------------|-----------|
| GW 1 | Allahou-Bazi            | Mechanised borehole with pipes that supplies Angovia and Allaou Bazi Villages | 778257          | 219982    |
| GW2  | Allahou-Bazi            | Hand pumped manual borehole                                                   | 778263          | 220025    |
| GW3  | Angovia                 | Hand pumped manual borehole                                                   | 778005          | 219593    |
| GW4  | Akakro I                | Foot pumped manual borehole                                                   | 775559          | 217521    |
| GW5  | Akakro II               | Hand pumped manual borehole                                                   | 775528          | 217408    |
| GW6  | N'Da Koffi Yobouékro II | Foot pumped manual borehole                                                   | 776036          | 216295    |
| GW7  | N'Da Koffi Yobouékro II | Foot pumped manual borehole                                                   | 776098          | 216212    |
| GW8  | Kouakou Gnanou I        | Foot pumped manual borehole                                                   | 774520          | 222333    |
| GW9  | Kouakou Gnanou II       | Hand pumped manual borehole                                                   | 774119          | 222246    |
| GW10 | Patizia II              | Hand pumped manual borehole                                                   | 769546          | 221538    |
| GW11 | Patizia II              | Hand pumped manual borehole                                                   | 771500          | 219636    |

#### Table 2-1 Groundwater Monitoring Points (SGS, 2006)

In addition, monitoring boreholes drilled around the old heap leach pads and ponds (PZ01-PZ05) have also been sampled. Their locations are shown on the Yaoure Project Environment Parameters Monitoring plan dated 18 December 2013.

SGS (2007) carried out an inventory of village and other wells and boreholes, some of which are included in the monitoring programme. Selected characteristics are included in Table 2-2.

| Villages      | Prof_<br>Totale | Prof_<br>Socle | Arrive_<br>Eau1 | Niv_<br>Statique | Debit_<br>Exploitable | Altér_<br>saturée | Arrivée/toit<br>socle |
|---------------|-----------------|----------------|-----------------|------------------|-----------------------|-------------------|-----------------------|
| AKAKRO        | 80,10           | 65,80          |                 | 33,40            | 8,90                  | 32,40             |                       |
| AKLLAOU BAZI  | 48,42           | 30,15          |                 | 19,20            | 1,50                  |                   |                       |
| ALLEY KOSSOU  | 85,20           | 15,50          |                 | 7,00             | 7,00                  | 8,50              |                       |
| ANGOVIA       | 84,70           | 64,70          |                 | 12,70            | 2,70                  | 52,00             |                       |
| KOUAKOUGNANOU | 38,80           | 16,10          | 25,00           | 12,30            | 1,50                  | 3,80              | 8,90                  |
| KOUAKOUGNANOU | 41,80           | 9,80           | 34,20           | 7,60             | 4,80                  | 2,20              | 24,40                 |
| KOUBI         | 79,90           | 46,00          |                 | 11,00            | 2,30                  | 35,00             |                       |
| PATIZIA2      | 66,90           | 24,70          |                 | 10,90            | 1,00                  | 13,80             |                       |
| PATIZIA1      | 43,30           | 20,00          |                 | 10,90            | 1,40                  | 9,10              |                       |
| MINE ANGOVIA  | 110,15          | 67,5           |                 | 10,64            | 6,0                   | 59,8              |                       |
| Max           | 85,20           | 65,80          | 34,20           | 33,40            | 8,90                  | 52,00             | 24,40                 |
| Moy           | 63,24           | 32,53          | 29,60           | 13,89            | 3,46                  | 19,60             | 16,65                 |
| Min           | 38,80           | 9,80           | 25,00           | 7,00             | 1,00                  | 2,20              | 8,90                  |

Table 2-2 Borehole Inventory (Source: SGS, 2007)



Groundwater samples were analysed for the following:

- **Physical Chemical Parameters:** pH, Dissolved Oxygen, Conductivity, Total Dissolved Solids, Total Suspended Solids, Apparent Color, True Color, Turbidity, Alkalinity and Hardness (CaCO<sub>3</sub>).
- *Nutrient and Other Chemical Parameters:* Sodium (Na), Potassium (K) Sulphate, Chloride, Nitrate, Nitrate, Calcium and Magnesium (Mg).
- *Metals (Total):* Fe, Mn, Cu, Zn, Pb, Hg, Cr, Ni, As, Cd, Al, Bi, Sb, Cd, Co and Se.
- *Cyanide:* Free and total Cyanide.
- *Microbiological:* total Plate Count, Total Coliforms and Faecal Coliforms (for drinking boreholes and wells.

In general the waters were all close to neutral in pH, can show elevated concentrations of calcium, magnesium, nitrate, iron, manganese, and there are cases of detectable arsenic in GW6-GW8 and PZ01-PZ05, and of bacteria in the village boreholes including E Coli in GW5. The bacterial contamination will be due to sanitation conditions in the villages upstream of the sample points. Otherwise quality appeared to be acceptable.



### 3. YAOURE PROJECT DRILLING AND TESTING

#### 3.1 ENVIRONMENTAL AND GEOTECHNICAL BOREHOLES

Groundwater environmental monitoring sites were selected to provide suitable coverage of the project area to define baseline conditions, including use of historic monitoring locations, and longer term environmental monitoring during construction and operations.

Eight geotechnical boreholes (known as 'Gash' holes and referred to as G1 through G8) were drilled between July and September 2014. The bores were advanced at 80 degrees using diamond coring. Coring started at a diameter of 96 mm (HQ) and was reduced to 75.7 mm (NQ) until completion.

In October 2014, in support of baseline monitoring, a series of eight vertical boreholes were drilled, named ESIA G1 through ESIA G8. The bores were 140 mm in diameter and were advanced by reverse circulation.

In late October and November 2014, a series of pumping and observation wells were drilled to accompany the Gash holes, designated YRC761 through YRC767. The bores were 140 mm in diameter and were advanced by reverse circulation.

Figure 1-2 shows the location of the groundwater monitoring boreholes within the overall project and surrounding area.

Table 3-1 summarises the environmental and geotechnical boreholes drilled in 2014.



#### Table 3-1 Monitoring and test bore summary details

| Borehole ID Survey (UTM) |                       |            |                |                 |                         | Drilling               |            |        |                          |                      |                                |                          |                                                      |
|--------------------------|-----------------------|------------|----------------|-----------------|-------------------------|------------------------|------------|--------|--------------------------|----------------------|--------------------------------|--------------------------|------------------------------------------------------|
| Drilled ID               | Amara /<br>Local name | Date       | Easting<br>(m) | Northing<br>(m) | Ground<br>Elevation (m) | Dates Drilled<br>Start | Complete   | Method | Drill angle<br>(degrees) | Azimuth<br>(degrees) | Drill hole<br>diameter (mm) ** | Total<br>Depth<br>(mbgl) | Purpose                                              |
| G1                       | YDD0223G              | 18/07/2014 | 220775         | 777333.1        | 216.147                 | 11/07/2014             | 14/07/2014 | DD     | 80                       | 270                  | HQ to NQ at 56.7m bgl          | 301.8                    | None                                                 |
| G2-OB                    | YDD0216G              | 17/07/2014 | 220950         | 776934.6        | 248.336                 | 05/07/2014             | 09/07/2014 | DD     | 80                       | 270                  | HQ to NQ at 17.4m bgl          | 380.15                   | C1 Observation well - Bedrock; & baseline monitoring |
| G3                       | YDD0242               | 08/08/2014 | 221202         | 777333.0        | 269.842                 | 28/07/2014             | 04/08/2014 | DD     | 80                       | 270                  | HQ to NQ at 72.4m bgl          | 394.8                    | None                                                 |
| G4                       | YDD0263               | 13/08/2014 | 221349         | 776933.3        | 295.915                 | 02/08/2014             | 10/08/2014 | DD     | 80                       | 270                  | HQ to NQ at 59.9m bgl          | 400.8                    | None                                                 |
| G5 -OB                   | YDD0349               | 24/09/2014 | 221531         | 777792.4        | 253.834                 | 17/09/2014             | 22/09/2014 | DD     | 80                       | 82                   | HQ to NQ at 35.5m bgl          | 440                      | C2 Observation well - Bedrock; & baseline monitoring |
| G6                       | YDD0359               | 30/09/2014 | 221675         | 777333.4        | 273.219                 | 22/09/2014             | 27/09/2014 | DD     | 80                       | 90                   | HQ to NQ at 92.5m bgl          | 388.9                    | None                                                 |
| G7-OB                    | YDD0360               | 02/10/2014 | 221660         | 776937.9        | 317.693                 | 24/09/2014             | 29/09/2014 | DD     | 80                       | 270 tbc              | HQ to NQ at 59.5m bgl          | 350.25                   | C3 Observation well - Bedrock; & baseline monitoring |
| G8                       | YDD0361               | 01/10/2014 | 221301         | 776484.8        | 276.623                 | 22/09/2014             | 30/09/2014 | DD     | 80                       | 270 tbc              | HQ to NQ at 77.4m bgl          | 300                      | Baseline monitoring                                  |
| ESIA G1                  | YRC754                | 28/10/2014 | 220670         | 779326.0        | 202.649                 | 20/10/2014             |            | RC     | 90                       | N/A                  | tbc                            | 41                       | Baseline monitoring                                  |
| ESIA G2                  | YRC757                | 31/10/2014 | 220101         | 777559.1        | 236.151                 | 23/10/2014             |            | RC     | 90                       | N/A                  | tbc                            | 40                       | Baseline monitoring                                  |
| ESIA G3                  | YRC756                | 31/10/2014 | 218080         | 776279.7        | 362.593                 | 22/10/2014             |            | RC     | 90                       | N/A                  | 140                            | 80                       | Baseline monitoring                                  |
| ESIA G4                  | YRC759                | 11/11/2014 | 222632         | 775795.2        | 246.314                 | 24/10/2014             |            | RC     | 90                       | N/A                  | 140                            | 40                       | Baseline monitoring                                  |
| ESIA G5                  | YRC760                | 11/11/2014 | 221095         | 775180.3        | 230.036                 | 24/10/2014             |            | RC     | 90                       | N/A                  | 140                            | 21                       | Baseline monitoring                                  |
| ESIA G6                  | YRC758                | 11/11/2014 | 222166         | 777021.3        | 362.210                 | 23/10/2014             |            | RC     | 90                       | N/A                  | 140                            | 80                       | Baseline monitoring                                  |
| ESIA G7                  | YRC753                | 28/10/2014 | 223202         | 779248.5        | 217.600                 | 21/10/2014             |            | RC     | 90                       | N/A                  | tbc                            | 58                       | Baseline monitoring                                  |
| ESIA G8                  | YRC755                | 31/10/2014 | 216529         | 775989.4        | 348.386                 | 22/10/2014             |            | RC     | 90                       | N/A                  | 140                            | 83                       | Baseline monitoring                                  |
| G2-PW                    | YRC761                | 17/11/2014 | 220951         | 776927.4        | 248.217                 |                        | 24/10/2014 | RC     | 90                       | N/A                  | 140                            | 80                       | C1 Pumping well - Regolith                           |
| G2-PW                    | YRC762                | 17/11/2014 | 220947         | 776941.6        | 248.353                 |                        | 29/10/2014 | RC     | 90                       | N/A                  | 140                            | 270                      | C1 Pumping well - Bedrock                            |
| G2-OW                    | YRC763                | 17/11/2014 | 220958         | 776934.3        | 248.356                 |                        | 29/10/2014 | RC     | 90                       | N/A                  | 140                            | 80                       | C1 Observation well - Regolith                       |
| G5-PW                    | YRC764                | 17/11/2014 | 221538         | 777800.9        | 253.915                 |                        | 31/01/2014 | RC     | 90                       | N/A                  | 140                            | 270                      | C2 Pumping well - Bedrock                            |
| G5-OB                    | YRC765                | 17/11/2014 | 221545         | 777794.4        | 254.061                 |                        | 01/11/2014 | RC     | 90                       | N/A                  | 140                            | 71                       | C2 Observation well - Regolith                       |
| G5-PW                    | YRC766                | 17/11/2014 | 221539         | 777786.2        | 254.486                 |                        | 01/11/2014 | RC     | 90                       | N/A                  | 140                            | 77                       | C2 Pumping well - Regolith                           |
| G7-PW                    | YRC767                | 17/11/2014 | 221652         | 776937.6        | 317.206                 |                        | 02/11/2014 | RC     | 90                       | N/A                  | 140                            | 186                      | C3 Pumping well - Bedrock                            |



## 3.2 PACKER TESTS

Packer testing was carried out for the 'Gash' geotechnical drill holes, G5 to G8, as summarised in Table 3-2. The packer tests were carried out in selected intervals of the NQ portions of the borehole. Packer intervals and results are summarised in Table 3-3.

| Borehole IDs |         | Water | Date     | Comment               |
|--------------|---------|-------|----------|-----------------------|
| G1           | YDD223G | 4.71  | 5/12/14  | Blocked at 26.1m      |
| G2           | YDD216G | 30.12 | 24/10/14 |                       |
| G3           | YDD242G | 1.61  | 5/12/14  | Blocked at 30.82m     |
| G4           | YDD263G | 14.78 | 04/11/14 | Slight response       |
| G5           | YDD349G | 26.48 | 04/11/14 | Packer Test - flow    |
| G6           | YDD359G | 36.17 | 04/11/14 | Packer Test - flow    |
| G7           | YDD360G | 77.86 | 04/11/14 | Packer Test - no flow |
| G8           | YDD361G | 34.95 | 04/11/14 | Packer Test - no flow |

#### Table 3-2 Geotechnical borehole summary

Double and single packers were used, with single packers used in the lower section and double packers at zones that indicated fracture (through examining core recovery or noting loss of drilling water). The packers were inflated by nitrogen and could be inflated to a maximum pressure of 550 psi. The rig water pump was used to pressurise the test section and was capable of delivering up to 160 psi. A 'no flow' was recorded when the maximum water pressure was used with insignificant indication of flow on the flow meter.

## 3.3 WELL INSTALLATION AND DEVELOPMENT

The environmental monitoring bores (ESIA G1 through ESIA G8) were drilled and installed by Amara. The monitoring bores were installed with 53 mm internal diameter (ID) PVC with screened intervals (1mm aperture machine slotted) targeting the water table in the weathered strata and weathered/unweathered contact. Installation depths ranged from 20 m to 80 m below ground level (bgl). A sand pack was installed in the bore annulus and bentonite seal emplaced above the screened interval.

Pumping test wells (YRC761 through YRC767) were installed with 125 mm ID PVC with screen intervals in the fractured bedrock or the weathered strata depending on the target. Corresponding observation wells were installed using 53 mm ID PVC screened at the same interval as the associated pumping test well. Sand pack and bentonite seals were not installed in the pumping test or observation wells.

Angled geotechnical drill holes were installed with 19 mm ID galvanised steel pipe with manual perforations cut to target fracture zones identified in the unweathered bedrock. A sand pack was installed in the bore annulus and bentonite seal emplaced above the perforated intervals where possible. Piezometers were installed in G1-G4 prior to arrival on site and G8 had been abandoned.



At surface each bore was completed with a cement plug and raised concrete plinth and metal casing with a lockable cap.

| Single / Double | Test Section<br>(mbgl) | Hydraulic<br>conductivity<br>(m/s) |
|-----------------|------------------------|------------------------------------|
| Single          | 400-440                | 2.9E-7                             |
| Single          | 260-440                | 1.2E-7                             |
| Double          | 260-263                | 6.6E-6                             |
| Double          | 146-149                | 4.9E-6                             |
| Double          | 143-146                | 1.6E-6                             |
| Double          | 107-110                | No Flow                            |
| Single          | 248-389                | No Flow                            |
| Single          | 200-389                | No Flow                            |
| Single          | 173-389                | No Flow                            |
| Single          | 170-389                | No Flow                            |
| Single          | 71-389                 | 5.2 E-6                            |
| Double          | 71-74                  | No Flow                            |
| Double          | 68-71                  | No Flow                            |
| Double          | 59-62                  | No Flow                            |
| Double          | 56-59                  | No Flow                            |
| Single          | 280-350                | No Flow                            |
| Single          | 200-350                | No Flow                            |
| Single          | 172-350                | No Flow                            |
| Double          | 175-178                | No Flow                            |
| Single          | 166-350                | No Flow                            |
| Single          | 250-300                | No Flow                            |
| Single          | 199-300                | No Flow                            |
| Single          | 148-300                | No Flow                            |
| Single          | 100-300                | No Flow                            |
| Single          | 79-300                 | No Flow                            |

#### Table 3-3 Packer test intervals

#### 3.4 FALLING HEAD TESTS

A total of 20 falling head tests were carried out in installed geotechnical, environmental, and pumping test boreholes, although only four provided useable results due to low permeability or too rapid change in water level following introduction of the slug of water.



Following measurement of the rest water level, a 25 litre 'slug' of water was poured into the borehole in approximately one minute and water level recovery back to the rest water level monitored. Results of the falling head tests are presented in Table 3-4.

The first four geotechnical boreholes (G1-G4) were particularly unresponsive due to clogging as a consequence of the installation method. Recovery monitoring in the other four 'gash' holes (G5-G6) was difficult due to the inclination of the borehole causing friction between the borehole wall and the dip meter tape.

| Well            | Hydraulic Conductivity (m/s) |
|-----------------|------------------------------|
| ESIAG2 - YRC757 | 5E-07                        |
| ESIAG3 - YRC756 | 3E-07                        |
| ESIAG7 - YRC753 | 1E-06                        |
| ESIAG8 - YRC755 | 2E-07                        |

#### Table 3-4 Falling head test results

#### 3.5 PUMPING TESTS

Pumping tests were conducted at three locations proximal to the planned open pit area (site G2, G5 and G7). Pumping tests were conducted in the weathered and unweathered bedrock strata at sites G5 and G2. The unweathered bedrock was the target for testing at site G7.

Pumping tests were planned to comprise step-test, constant rate test, and recovery monitoring. Most testing was constrained however by excessive pumping drawdowns due to low yield conditions in the pumping boreholes. Table 3-5 summarises the pumping test borehole groupings and targets. Interpretation was carried out using Aquifer-32 analytical software. A summary of the step test results is provided in Table 3-6, and the constant rate test results in Table 3-7.

#### Table 3-5 Summary of pumping test configurations

| Site             | Well type           | Well ID | Target              | Depth |
|------------------|---------------------|---------|---------------------|-------|
| G5 (bedrock)     | Pumping well        | YRC764  | Bedrock             | 270   |
|                  | Observation<br>well | YDD349  | Bedrock             | 440   |
|                  | Observation well    | YRC766  | Weathered<br>strata | 77    |
|                  | Observation well    | YRC765  | Weathered<br>strata | 71    |
| G5<br>(weathered | Pumping well        | YRC766  | Weathered<br>strata | 77    |
| strata)          | Observation well    | YRC765  | Weathered<br>strata | 71    |



| Site         | Well type    | Well ID | Target    | Depth |
|--------------|--------------|---------|-----------|-------|
|              | Observation  | YRC764  | Bedrock   | 270   |
|              | well         |         |           |       |
|              | Observation  | YDD349  | Bedrock   | 440   |
|              | well         |         |           |       |
| G2 (bedrock) | Pumping well | YRC762  | Bedrock   | 270   |
|              | Observation  | YDD216  | Bedrock   | 380   |
|              | well         |         |           |       |
|              | Observation  | YRC761  | Weathered | 80    |
|              | well         |         | strata    |       |
|              | Observation  | YRC763  | Weathered | 80    |
|              | well         |         | strata    |       |
| G2           | Pumping well | YRC761  | Weathered | 80    |
| (weathered   |              |         | strata    |       |
| strata)      | Observation  | YRC763  | Weathered | 80    |
|              | well         |         | strata    |       |
|              | Observation  | YRC762  | Bedrock   | 270   |
|              | well         |         |           |       |
|              | Observation  | YDD216  | Bedrock   | 380   |
|              | well         |         |           |       |
| G7 (bedrock) | Pumping well | YRC767  | Bedrock   | 186   |
|              | Observation  | YDD360  | Bedrock   | 380   |
|              | well         |         |           |       |

### Table 3-6 Summary of step test results

| Pumped Well | Observation Well | Transmissivity<br>(m²/day)                             | r*r*S (m²)           | Coefficient Turbulent Head<br>Loss (sq d / m5) |  |  |  |  |  |  |  |
|-------------|------------------|--------------------------------------------------------|----------------------|------------------------------------------------|--|--|--|--|--|--|--|
| YRC762 (G2) | YRC761           | 78                                                     | 6.3E-01              | 1.88E-06                                       |  |  |  |  |  |  |  |
| YRC762 (G2) | YRC763           | 21                                                     | 3.3E-02              | -4.51E-05                                      |  |  |  |  |  |  |  |
| YRC762 (G2) | YRC762 (G2)      | 8.6                                                    | 1.7E-07              | -2.87E-04                                      |  |  |  |  |  |  |  |
| YRC762 (G2) | YDD216           | 16                                                     | 6.5E-03              | -4.13E-05                                      |  |  |  |  |  |  |  |
| YRC761      | YRC761           | 0.4                                                    | 1.0E-02              | 4.80E-03                                       |  |  |  |  |  |  |  |
| YRC761      | YRC762 (G2)      | Insufficient response to evaluate hydraulic parameters |                      |                                                |  |  |  |  |  |  |  |
| YRC761      | YRC763           | Insuffici                                              | hydraulic parameters |                                                |  |  |  |  |  |  |  |
| YRC761      | YDD216           |                                                        | No response was ider | tified in well                                 |  |  |  |  |  |  |  |
| YRC764 (G5) | YRC764 (G5)      | 6.4                                                    | 6.4E-02              | 5.65E-05                                       |  |  |  |  |  |  |  |
| YRC764 (G5) | YRC766           |                                                        | No response was ider | tified in well                                 |  |  |  |  |  |  |  |
| YRC764 (G5) | YDD349           | 6.3                                                    | 1.3E-01              | 5.27E-05                                       |  |  |  |  |  |  |  |
| GW7 (F1)    | GW7 (F1)         | 18                                                     | 1.1E-02              | 1.07E-05                                       |  |  |  |  |  |  |  |
| GW8 (F2)    | GW8 (F2)         | 1.2                                                    | 3.4E-02              | 4.89E-03                                       |  |  |  |  |  |  |  |



| Table 3-7 | Summary of | constant rate | test results |
|-----------|------------|---------------|--------------|
|-----------|------------|---------------|--------------|

| Bumpod                                                                                                                 | Observation | Consta                                                                            |                         | Recovery                   |                              |                     |                            |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------|----------------------------|------------------------------|---------------------|----------------------------|--|--|--|
| Pumped<br>WellOYRC762 (G2)YFYRC764 (G5)YFYRC764 (G5)YFYRC767 (G7)YEGW7 (F1)G\                                          | Well        | Curve Fit                                                                         | Pumping Rate<br>(I/min) | Transmissivity<br>(m²/day) | Storage Coefficient<br>Ratio | Curve Fit           | Transmissivity<br>(m²/day) |  |  |  |
|                                                                                                                        | YDD216      | Hantush and Jacob 1955 Leaky Aquifer                                              | 15                      | 1.50                       | 1.3E-04                      | Theis 1946 Recovery | 0.14                       |  |  |  |
| YRC762 (G2)                                                                                                            | YRC761      | Hantush 1960 Leaky Aquifer with Storage                                           | 15                      | 2.72                       | 3.0E-04                      | Theis 1946 Recovery | 26.71                      |  |  |  |
|                                                                                                                        | YRC762 (G2) | Hantush and Jacob 1955 Leaky Aquifer                                              | 15                      | 0.64                       | 1.1E-02                      | Theis 1946 Recovery | 1.25                       |  |  |  |
|                                                                                                                        | YRC763      | Cooper and Jacob 1946 Straight Line Method                                        | 15                      | 1.52                       | 9.6E-05                      | Theis 1946 Recovery | 0.02                       |  |  |  |
|                                                                                                                        | YDD349      | Hantush 1960 Leaky Aquifer with Storage                                           | 19.5                    | 0.16                       | 4.3E-06                      | Theis 1946 Recovery | 0.20                       |  |  |  |
|                                                                                                                        | YRC764 (G5) | Cooper and Jacob 1946 Straight Line Method                                        | 19.5                    | 0.64                       | 8.5E-02                      | Theis 1946 Recovery | 0.53                       |  |  |  |
| Pumped<br>Well           YRC762 (G2)           YRC764 (G5)           YRC767 (G7)           GW7 (F1)           GW8 (F2) | YRC765      | Hantush 1960 Leaky Aquifer with Storage                                           | 19.5                    | 2.82                       | 1.2E-03                      | Theis 1946 Recovery | 0.75                       |  |  |  |
|                                                                                                                        | YRC766      | Hantush 1960 Leaky Aquifer with Storage                                           | 19.5                    | 4.40                       | 2.3E-03                      | Theis 1946 Recovery | 18.48                      |  |  |  |
|                                                                                                                        | YDD360      |                                                                                   | n pumping.              |                            |                              |                     |                            |  |  |  |
| 1 RC/07 (G7)                                                                                                           | YRC767 (G7) | Well kept                                                                         | going dry. Insuffi      | cient data points.         | Pump rate not record         | ed                  |                            |  |  |  |
| GW7 (F1)                                                                                                               | GW7 (F1)    | Hantush 1960 Leaky Aguifer with Storage 5 24.074 0.457078 Theis 1946 Recovery 8.1 |                         |                            |                              |                     |                            |  |  |  |
| GW8 (F2)                                                                                                               | GW8 (F2)    | Hantush 1960 Leaky Aquifer with Storage                                           | Theis 1946 Recovery     | 0.53                       |                              |                     |                            |  |  |  |



## 4. GROUNDWATER MONITORING

#### 4.1 WATER LEVEL MONITORING

Groundwater levels were periodically recorded throughout the field programme and have continued in accordance with the environmental baseline monitoring plan (attached to the Surface Water Baseline report).

Table 4-1 provides a summary of the groundwater elevations.

#### 4.2 GROUNDWATER QUALITY

Groundwater quality monitoring and results are included in the Surface Water Baseline report.



#### Table 4-1 Groundwater level monitoring

| Bore ID | Amara drill hole ID / local | Easting | Northing Target | <b>Ground Elevation</b> | Stick-up | 24/10/14 | 25/10/14 | 27/10/14 | 29/10/14 | 3/11/14 | 4/11/14 | 27/11/14 | 3/12/14 | 4/12/14 | 5/12/14 | 6/12/14 | 7/12/14 | 18/1/15 | 19/1/15 | 23/1/15 | 27/1/15 | 28/1/15 | 16/2/15 | 17/2/15 | 18/2/15 | 16/3/15 | 17/3/15 | 20/3/15 |
|---------|-----------------------------|---------|-----------------|-------------------------|----------|----------|----------|----------|----------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| G1      | YDD0223G                    | 220775  | 777333 Bedrock  | 216.15                  | 0.80     |          |          |          |          | 211.97  |         |          |         |         | 212.24  |         |         |         |         |         |         |         |         |         |         |         |         |         |
| G2-OB   | YDD0216G                    | 220950  | 776935 Bedrock  | 248.34                  | 0.50     | 218.72   |          |          |          |         |         |          |         |         | 218.82  |         |         | 218.2   |         |         |         |         |         | 217.67  |         | 217.66  |         |         |
| G3      | YDD0242                     | 221202  | 777333 Bedrock  | 269.84                  | 0.80     |          |          |          |          | 269.37  |         |          |         |         | 269.03  |         |         |         |         |         |         |         |         |         |         |         |         |         |
| G4      | YDD0263                     | 221349  | 776933 Bedrock  | 295.92                  | 0.70     | 276.82   |          |          |          | 282.32  | 281.84  |          |         |         | 283.05  |         |         |         |         |         |         |         |         |         |         |         |         |         |
| G5 -OB  | YDD0349                     | 221531  | 777792 Bedrock  | 253.83                  | 0.40     | 227.53   |          |          | 228.21   | 227.69  | 227.75  | 227.75   |         |         |         |         |         |         |         |         | 227.56  |         |         | 227.51  |         | 227.41  |         |         |
| G6      | YDD0359                     | 221675  | 777333 Bedrock  | 273.22                  | 0.50     |          |          |          |          | 237.62  | 237.55  |          |         | 236.82  |         |         |         |         |         |         | 235.69  |         |         | 235.41  |         |         |         | 235.77  |
| G7-OB   | YDD0360                     | 221660  | 776938 Bedrock  | 317.69                  | 0.50     |          |          |          | 239.09   | 240.23  | 240.33  |          |         | 240.56  |         |         |         |         |         | 241.2   |         |         |         | 241.4   |         |         |         | 241.37  |
| G8      | YDD0361                     | 221301  | 776485 Bedrock  | 276.62                  | 0.50     |          |          |          |          | 252.31  | 242.17  |          |         |         | 240.74  |         |         |         |         |         | 241.22  |         |         | 241.12  |         |         |         | 241.47  |
| G2-PW   | YRC761                      | 220951  | 776927 Regolith | 248.22                  | 0.40     |          |          |          |          |         |         |          |         |         | 217.497 |         |         | 217.107 |         |         |         |         |         | 217.357 |         | 217.347 |         |         |
| G2-PW   | YRC762                      | 220947  | 776942 Bedrock  | 248.35                  |          |          |          |          |          |         |         |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| G2-OW   | YRC763                      | 220958  | 776934 Regolith | 248.36                  |          |          |          |          |          |         |         |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| G5-PW   | YRC764                      | 221538  | 777801 Bedrock  | 253.92                  | 0.90     |          |          |          |          |         |         |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| G5-OB   | YRC765                      | 221545  | 777794 Regolith | 254.06                  | 0.80     |          |          |          |          |         |         |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| G5-PW   | YRC766                      | 221539  | 777786 Regolith | n 254.49                | 0.50     |          |          |          |          |         |         |          |         |         |         | 228.786 |         |         |         |         | 228.566 |         |         | 228.526 |         | 228.406 |         |         |
| G7-PW   | YRC767                      | 221652  | 776938 Bedrock  | k 317.21                |          |          |          |          |          |         |         |          |         | 241.666 |         |         |         |         |         | 243.476 |         |         |         | 240.496 |         |         |         | 243.596 |
| ESIA G1 | YRC754                      | 220670  | 779330 Regolith | 202.65                  | 0.80     |          |          | 197.3    |          |         |         |          | 198.62  |         |         |         |         |         |         | 197.45  |         |         |         | 197.04  |         |         | 196.69  |         |
| ESIA G2 | YRC757                      | 220101  | 777559 Regolith | 236.15                  | 0.80     |          |          | 226.18   |          |         |         |          |         | 226.51  |         |         |         |         |         | 224.93  |         |         |         | 223.95  |         | 223.36  |         |         |
| ESIA G3 | YRC756                      | 218080  | 776280 Regolith | 362.59                  | 0.90     |          | 303.41   |          |          |         |         |          |         |         | 303.54  |         |         |         |         | 303.66  |         |         | 303.71  |         |         |         | 303.68  |         |
| ESIA G4 | YRC759                      | 222632  | 775795 Regolith | 246.31                  | 0.90     |          | 237.76   |          |          |         |         |          |         |         |         | 238.45  |         |         | 238.16  |         |         |         |         | 238.01  |         | 237.86  |         |         |
| ESIA G5 | YRC760                      | 221095  | 775180 Regolith | 230.00                  | 0.80     |          | 228.72   |          |          |         |         |          |         |         |         | 228.94  |         |         | 227.25  |         |         |         |         | 226.61  |         | 226.37  |         |         |
| ESIA G6 | YRC758                      | 222166  | 777021 Regolith | 362.21                  | 0.90     |          |          |          |          |         |         |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| ESIA G7 | YRC753                      | 223202  | 779249 Regolith | 217.60                  | 0.90     |          | 208.01   |          |          |         |         |          |         |         | 207.3   |         |         |         |         |         |         | 206.2   |         | 206.63  |         |         | 206.34  |         |
| ESIA G8 | YRC755                      | 216529  | 775989 Regolith | 348.39                  | 0.95     |          | 315.57   |          |          |         |         |          |         |         |         |         | 316.17  |         |         | 316.56  |         |         | 316.54  |         |         |         | 316.45  |         |
| PZ01    | Piezometer 1                | 221096  | 778268          |                         |          |          |          |          |          |         |         |          | -21.52  |         |         |         |         |         |         |         | -21.71  |         |         | -21.74  |         | -21.81  |         |         |
| PZ02    | Piezometer 2                |         |                 |                         |          |          |          |          |          |         |         |          | -16.55  |         |         |         |         |         |         |         | -16.55  |         |         | -16.52  |         | -16.56  |         |         |
| PZ03    | Piezometer 3                |         |                 |                         |          |          |          |          |          |         |         |          | -7.05   |         |         |         |         |         |         |         | -7.7    |         |         | -7.98   |         | -8.22   |         |         |
| GW1     | Electric Pump               | 219982  | 778257          |                         |          |          |          |          |          |         |         |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| GW2     | Allahou-Bazi well           | 220025  | 778263          |                         |          |          |          |          |          |         |         |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| GW3     | Angovia well                | 219593  | 778005          |                         |          |          |          |          |          |         |         |          |         | -8.87   |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| GW4     | Akakro well                 | 217521  | 775559          |                         |          |          |          |          |          |         |         |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| GW6     | N'da Koffi Yobouerkro well  | 216295  | 776036          |                         |          |          |          |          |          |         |         |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| GW9     | Kouakougnanou well          | 222246  | 774119          |                         |          |          |          |          |          |         |         |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| GW11    | Patizia well                | 219636  | 771500          |                         |          |          |          |          |          |         |         |          |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |



## 5. **REFERENCES**

SRK (2008) Technical Review of the Angovia Gold Mine, Mount Yaoure, Côte d'Ivoire (NI 43-101 Report), 2008

SGS (2006) Angovia Gold Project – Baseline Data Monitoring Programme

SGS, 2007: Environmental and Social Impact Assessment of the Angovia Gold Mine, Cluff Gold. Ghana.